a2 United States Patent

Leyvitt et al.

US009262557B2

US 9,262,557 B2
*Feb. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

MEASURE OF ANALYSIS PERFORMED IN
PROPERTY CHECKING

Applicant: Mentor Graphics Corporation,
Wilsonville, OR (US)

Inventors: Jeremy Rutledge Levitt, San Jose, CA
(US); Christophe Gauthron, Mountain
View, CA (US); Chian-Min Richard
Ho, Palo Alto, CA (US); Ping Fai
Yeung, San Jose, CA (US); Kalyana C.
Mulam, San Jose, CA (US); Ramesh

Sathianathan, Sunnyvale, CA (US)

Assignee: Mentor Graphics Corporation,

Wilsonville, OR (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/858,650

Filed: Apr. 8,2013
Prior Publication Data
US 2013/0239084 Al Sep. 12, 2013

Related U.S. Application Data

Division of application No. 13/027,090, filed on Feb.
14, 2011, now Pat. No. 8,418,121, which is a
continuation of application No. 11/939,485, filed on
Nov. 13, 2007, now Pat. No. 7,890,897, which is a

(58) Field of Classification Search
CPCcc..... GOG6F 17/504; GO6F 17/5022; GOGF
17/5031; GO6F 17/50; GOGF 2217/84; GO6F
17/5009; GO6F 17/505; GOG6F 2217/08;
GOG6F 2217/10; GO6F 2217/78; GOIR 31/30
USPC ittt 716/100-106
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,465,216 A 11/1995 Rotem et al.
5,617,534 A 4/1997 Balmer et al.
5,724,504 A 3/1998 Aharon et al.
(Continued)
OTHER PUBLICATIONS

Abdulla et al., “Symbolic Reachability Analysis Based on SAT Solv-
ers,” 6th Int’l Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS 2000), SpringerVerlag, 2000,
pp. 411-425.

(Continued)

Primary Examiner — Binh Tat
(74) Attorney, Agent, or Firm — Klarquist Sparkman, LL.P

(57) ABSTRACT

The amount of analysis performed in determining the validity
of a property of a digital circuit is measured concurrent with
performance of the analysis, and provided as an output when
atrue/false answer cannot be provided e.g. when stopped due
to resource constraints. In some embodiments, a measure of
value N indicates that a given property that is being checked
will not be violated within a distance N from an initial state
from which the analysis started. Therefore, in such embodi-
ments, a measure of value N indicates that the analysis has
implicitly or explicitly covered every possible excursion of
length N from the initial state, and formally proved that no
counter-example is possible within this length N.

5 Claims, 5 Drawing Sheets

206~ J=—

(Continued)
Int. Cl.
GO6F 17/50 (2006.01)
U.S. CL
CPCcccee. GO6F 17/50 (2013.01); GO6F 17/504
(2013.01)
STATE SPACE 204
200
‘ 205

207

202

203

PROCF RADMS =1 209

PROPERTY

US 9,262,557 B2
Page 2

Related U.S. Application Data

division ofapplication No. 11/006,238, filed on Dec. 6,
2004, now Pat. No. 7,318,205, which is a continuation
of application No. 10/174,379, filed on Jun. 17, 2002,
now Pat. No. 6,848,088.

(56) References Cited
U.S. PATENT DOCUMENTS

6,102,959 A 8/2000 Hardin et al.
6,175,946 Bl 1/2001 Lyetal.
6,185,516 B1* 2/2001 Hardinetal.ccco..... 703/2
6,192,505 Bl 2/2001 Beer et al.
6,292,765 Bl 9/2001 Ho et al.
6,311,293 Bl 10/2001 Kurshan et al.
6,356,858 Bl 3/2002 Malka et al.
6,408,262 Bl 6/2002 Leerberg et al.
6,457,162 Bl 9/2002 Stanion
6,470,480 B2 10/2002 Ganesan et al.
6,539,523 Bl 3/2003 Narain et al.
6,725,431 BL1* 4/2004 Yangc...cenncn 716/107
6,728,939 B2 4/2004 Johannsen
6,751,582 Bl 6/2004 Andersen et al.
6,848,088 B1* 1/2005 Levittetal.c.......... 716/106
7,020,856 B2 3/2006 Singhal et al.
7,318,205 B2* 1/2008 Levittetal. 716/106
7,340,386 B2 3/2008 Pal et al.
7,890,897 B2* 2/2011 Levittetal.cc.o....... 716/136
8,418,121 B2 4/2013 Levitt et al.
2002/0138812 Al 9/2002 Johannsen
OTHER PUBLICATIONS

Biere et al,, “Symbolic Model Checking Using SAT Procedures
Instead of BDDs,” Proceedings of the Design Automation Confer-
ence (DAC 1999) pp. 317-320.

Biere et al., “Symbolic Model Checking without BDDs,” Proceed-
ings of Workshop on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 1999), vol. 1579, pp. 193-207.

Bose, “Automatic Bias Generation for Biased Random Instruction
Generation,” Thesis, University of Illinois at Urbana-Champaign,
2001, 60 pages.

Burch et al., “Automatic Verification of Pipelined Microprocessor
Control,” Proceedings of the Int’l Conference on Computer-Aided
Verification, (CAV 1994), pp. 68-80.

Burch et al., Symbolic model checking: 10°° states and beyond,
Information and Computation,No. 2, Jun. 1992 vol. 98, pp. 143-144.
Cho et al., “Redundancy Identification/Removal and Test Generation
for Sequential Circuits Using Implicit State Enumeration,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 12, No. 7, Jul. 1993, pp. 935-945.

Clarke et al., “Bounded Model Checking Using Satisfiability Solv-
ing,” in Formal Methods in System Design, (Kluwer Academic Pub-
lishers Jul. 2001), vol. 19, issue 1, pp. 1-20.

Clarke et al., “Automatic verification of finite-state concurrent sys-
tems using temporal logic specifications,” ACM Transactions on
Programming Languages and Systems (1986), vol. 8, pp. 244-263.
Davis et al., “A machine program for therorem-proving,” Communi-
cations of the ACM, Jul. 1962 vol. 5, pp. 394-397.

Devadas, et al., “An Observability-Based Code Coverage Metric for
Functional Simulation,” IEEE/ACM Int’l Conference on Computer-
Aided Design, Nov. 10-14, 1996, pp. 418-425.

Dill et al., “Protocol Verification as a Hardware Design Aid,” Pro-
ceedings of the Int’l Conference on Computer Design (Oct. 1992), pp.
1-4.

Dill et al., “Simulation meets formal verification,” Embedded tutorial
in the IEEE Int’l Conf. on Computer-Aided Design, ICCAD 1999,
San Jose, CA, 1999, 11 pages.

Dill, “What’s between simulation and formal verification?”” Design
Automation Conference Presentation, 1998, 52 pages.

Drako etal., “HDL Verification Coverage,” Integrated System Design
Magazine, vol. 6, Jun. 1998, pp. 21-37.

Ganai et al., “Improved SAT-Based Bounded Reachability Analysis,”
Proceedings of the ASPDAC 2002 / 15th Int’l Conference on VLSI
Design (VLSID °02), Mar. 2002, pp. 729-734.

Ganai et al., “Enhancing Simulation with BDDs and ATPG,” Pro-
ceedings of the 36th Annual ACM/IEEFE Design Automation Confer-
ence, 1999, pp. 385-390.

Ganai, “Enhancing Simulation with BDDs and ATPG,” Thesis, Uni-
versity of Texas at Austin, Dec. 1998, 39 pages.

Geist et al., “Coverage-Directed Test Generation Using Symbolic
Techniques,” Proceedings of the First Int’l Conference on Formal
Methods in Computer-Aided Design, 1996, 16 pages.

Geist, et al., “Coverage-Directed Test Generation Using Symbolic
Techniques,” Proceedings of the First International Conference on
Formal Methods in Computer-Aided Design, (FMCAD 1996), pp.
142-159.

Goering et al., “Tool vendors attach verification logjam,” Mar. 4,
2002 downloaded from http://www.eedesign.com/story/
OEG2002030450018, pp. 1-4.

Gu et al., “Algorithms for the Satisfiability (SAT) Problem: A Sur-
vey,” DIAMACS Series on Discrete Mathematics and Theoretical
Computer Science, vol. 35, pp. 0-131, American Mathematical Soci-
ety 1997, downloaded from http://citeseer.nj.nec.com/56722 html.
Gupta et al., “Toward Formalizing a Validation Methodology Using
Simulation Coverage,” Proceedings of the 34th Design Automation
Conference, 1997, 6 pages.

Ho et al., “Architecture Validation for Processors,” Proceedings 22nd
Annual Int’l Symposium on Computer Architecture (Jun. 1995), pp.
404-413.

Ho et al., “Validation Coverage Analysis for Complex Digital
Designs,” Proceedings 1996 IEEE/ACM Int’l Conference on Com-
puter-Aided Design (Nov. 1996), pp. 146-151.

Ho et al., “Validation Coverage Analysis for Complex Digital
Designs,” Proceedings of the 1996 IEEE/ACM Int’l Conference on
Computer-aided Design, 1996, 6 pages.

Hoskote et al., “Automatic Extraction of the Control Flow Machine
and Application to Evaluating Coverage of Verification Vectors,” Int [
Conference on Computer Design: VLSI in Computers & Processors,
Oct. 2-4, 1995, pp. 532-537.

Hoskote et al., “Coverage Estimation for Symbolic Model Check-
ing,” Proceedings of the 36th Design Automation Conference (DAC
1999), pp. 300-305.

Kantrowitz et al., “I’m Done Simulating; Now What? Verification
Coverage Analysis and Correctness Checking of the DEC Chip
21164 Alpha microprocessor,” Proceedings of the 33rd Design Auto-
mation Conference, 1996, 6 pages.

Kern et al., “Formal Verification in Hardware Design: A Survey,”
ACM Trans. On Design Automation of Electronic Systems (Apr.
1999), vol. 4, pp. 1-61, downloaded from http://citeseer.nj.nec.com/
kern99formal html.

Kuehlmann et al., “Circuit-Based Boolean Reasoning,” Proceedings
of the 38th Design Automation Conference (DAC °01), Jun. 2001, pp.
232-237.

Lipman, “Covering your HDL chip-design bets,” EDN Magazine,
Oct. 22, 1998, pp. 65-74.

Liu, “Coverage-Driven Functional Verification,” document not
dated, downloaded on Aug. 5, 2010, 30 pages.

Liu, “SOC Verification Methodology,” document not dated, down-
loaded from: http://vlsi.cse.yzu.edu.tw/related/SoC/04_ Verify.pdf
on Sep. 21, 2010, 68 pages.

Maxfield, EEdesign, “Why properties are important,” EE Times,
May 12, 2002, downloaded from http//www.cedesign.com/story/
OEG20020515S0033, pp. 1-5.

McMillan, “Symbolic model checking—an approach to the state
explosion problem,” Ph.D. thesis, Carnegie-Mellon University, 1992,
pp. 1-212.

Model Technology Inc., “ModelSim EE/PLUS Reference Manual,”
version 5.2, Oct. 1998, 570 pages.

Moskewicz et al., “Chaff: Engineering an Efficient SAT Solver,”
Proceedings of the 38th Design Automation Conference (DAC "01),
Jun. 2001, pp. 530-535.

Moundanos et al., “Abstraction Techniques for Validation Coverage
Analysis and Test Generation,” I[EEE Transactions on Computers,
vol. 47, No. 1, Jan. 1998, 13 pages.

US 9,262,557 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Moundanos, “Abstraction Techniques for Validation Coverage
Analysis and Test Generation,” IEEE Transactions on Computers
(Jan. 1998), vol. 47, pp. 2-14.

Piziali et al., “Functional Verification Planning and Management,”
document marked Dec. 7, 2009, downloaded from: http://www.
synopsys.com/Community/UniversityProgram/CapsuleModule/
FunctionalVerificationPlanning.pdf on Sep. 21, 2010, 43 pages.
Piziali, “Code Coverage,” Functional Verification Coverage Mea-
surement and Analysis, Front Matter and Chapter 5, Springer 2004,
pp. ii-vii and 79-95.

Piziali, “Verification Planning to Functional Closure of Processor-
Based SoCs,” DesignCon 2006, downloaded from: http://www.

designcon.com/2006/pdf/3-tp2__piziali.pdf on Sep. 21, 2010, 15
pages.

Touati et al., “Implicit State Enumeration of Finite State Machines
using BDD’s,” IEEFE Int’l Conference on Computer-Aided Design
1990, 1990, 4 pages.

Van Campenhout et al., “Evaluation of Design Error Models for
Verification Testing of Microprocessors,” IEEE 1st Int’l Workshop on
Microprocessor Test and Verification, Oct. 23, 1998, S pages.
Verisity Design, Inc., “Specman# Elite Tutorial, Version 4.0.1,” 2002,
108 pages.

Yang et al., “BDS: A BDD-Based Logic Optimization System,”
Proceedings of the 37th Design Automation Conference, 2000, 6
pages.

* cited by examiner

U.S. Patent Feb. 16, 2016 Sheet 1 of 5 US 9,262,557 B2

FORMALLY VERIFY A PRCPERTY OF A DICITAL CIRCUIT FOR AT
LEAST ONE ITERATION (e.q. OF A BREADTH FIRST SEARCH) 4— 101

INCRLMLN | A MEASURE (e.g. OF DEPTH) IF NO
COUNTEREXAMPLE 1S FOUND FOR THE PROPERTY | 4py

HAS

NO A RESOURCE

! ~ [IMIT BEEN -
105 REACHED?

/ YES

DISPLAY A REPORT
BASED ON MFASURE {106 FIG. 1

Set Proof radius = 0

T 301
Set range of onalysis to n cycles
o o,
7pp|y properly checking clgorithm o
find counter—example to given property 1_ 43
305
!
5 | Yes Report counter—example
Counter—example to property found? _
and proof radius
304
No
. Yes R t f dius
Resource limit reached? eporl proof radius
306 ?
N
° 308
Increment proof radius;

Increment range of analysis L 357 FIG. 3

U.S. Patent

Feb. 16, 2016

Sheet 2 of 5

US 9,262,557 B2

—
STATE SPACE
200

i
\
1
t
l

i

INPUT

219

1 o Logic
EIN?UT .

PROOK

RADIUS — 1 Lzog

PROPERTY

FIG. 2B

U.S. Patent

Feb. 16, 2016 Sheet 3 of 5 US 9,262,557 B2
STATL SPACE g -
200 }
205

201

206~W@Z}._“j62%:j:/

207~«ggy‘//// 203

FIG.

3

PROOF RADIUS = 2

208

FIG. 2D

US 9,262,557 B2

Sheet 4 of 5

Feb. 16, 2016

U.S. Patent

U.S. Patent Feb. 16, 2016 Sheet 5 of 5 US 9,262,557 B2

!
—=
=
—‘AY
2 1]
= ~
=
e

T

==) /
—F ,,
- i' Y I = :
) —ﬁ
N = —
= —
‘_— </\/> \\ 1\ —7
¥ AP

US 9,262,557 B2

1
MEASURE OF ANALYSIS PERFORMED IN
PROPERTY CHECKING

CROSS-REFERENCE TO PRIORITY
APPLICATION

This application is a divisional of U.S. Pat. No. 13/027,090,
entitled “MEASURE OF ANALYSIS PERFORMED IN
PROPERTY CHECKING:; filed on Feb. 14, 2011 (now U.S.
Pat. No. 8,418,121), which is a continuation of U.S. patent
application Ser. No. 11/939,485, entitled “MEASURE OF
ANALYSIS PERFORMED IN PROPERTY CHECKING,”
filed on Nov. 13,2007 (now U.S. Pat. No. 7,890,897), which is
a divisional of U.S. patent application Ser. No. 11/006,238,
entitle “MEASURE OF ANALYSIS PERFORMED IN
PROPERTY CHECKING,” filed on Dec. 6, 2004 (now U.S.
Pat. No. 7,318,205), which is a continuation of U.S. patent
application Ser. No. 10/174,379, filed Jun. 17, 2002 (now
U.S. Pat. 6,848,088), entitled “MEASURE OF ANALYSIS
PERFORMED IN PROPERTY CHECKING,” all of which
are hereby incorporated by reference as if set forth in full in
this application for all purposes.

BACKGROUND OF THE INVENTION

Exhaustively checking one or more properties in each and
every possible state (e.g. of size 1000 bits) and each and every
possible input combination to each state by simulation, (e.g.
using test vectors) is prohibitively expensive. For this reason,
digital circuits (portions thereof or in their entirety) are often
analyzed by formal verification, to determine the validity of
one or more properties that describe correct and incorrect
behaviors in the circuit.

Formal verification of properties can use any of a variety of
methods to prove that it is impossible to violate a given
property, starting from an initial state or set of initial states of
the digital circuit. Tools for formal verification of properties
that are available in the prior art (either commercially or from
public sources such as universities and laboratories) may be
based on any of a number of techniques, such as (1) symbolic
model checking, (2) symbolic simulation, (3) explicit state
enumeration, and (4) satisfiability (SAT). For background on
each of the just-described techniques, see, for example, the
following references, each of which is incorporated by refer-
ence herein in its entirety:

(1) an article by J. R. Burch, E. M. Clarke, K. .. McMillan,
D. L. Dill, and J. Hwang, entitled “Symbolic model checking:
10%° states and beyond”, published in Information and Com-
putation, Vol. 98, no. 2, June 1992; another article entitled
“Coverage Estimation for Symbolic Model Checking” by
Yatin Hoskote, Timothy Kam, Pei-Hsin Ho, and Xudong
Zhao, published in Proceedings of DAC 1999 (Best Paper
Award), pp. 300-305, and a PhD thesis by K. L. McMillan
entitled “Symbolic model checking—an approach to the state
explosion problem”, Carnegie Mellon University, 1992;

(2) article entitled “Automatic Verification of Pipelined
Microprocessor Control,” by Jerry R. Burch and David L.
Dill, published in the proceedings of International Confer-
ence on Computer-Aided Verification, LNCS 818, Springer-
Verlag, June 1994;

(3) article by E. M. Clarke, E. A. Emerson and A. P. Sistla
entitled “Automatic verification of finite-state concurrent sys-
tems using temporal logic specifications” published in ACM
Transactions on Programming [L.anguages and Systems, 8(2):
244-263, 1986; and article entitled “Protocol Verification as a
Hardware Design Aid” by David Dill, Andreas Drexler, Alan

25

40

45

55

2

Hu and C. Han Yang published in Proceedings of the Inter-
national Conference on Computer Design, October 1992.

(4) article entitled “Bounded Model Checking Using Sat-
isfiability Solving” by Edmund Clarke, Armin Biere, Richard
Raimi, and Yunshan Zhu, published in Formal Methods in
System Design, volume 19 issue 1, July 2001, by Kluwer
Academic Publishers.

In addition, see U.S. Pat. No. 5,465,216 granted to Rotem,
et al. on Nov. 7, 1995, and entitled “Automatic Design Veri-
fication” (that is incorporated by reference herein in its
entirety) for an additional example of formal verification tool.
See also U.S. Pat. No. 6,192,505 granted to Beer, etal. on Feb.
20, 2001, and entitled “Method and system for reducing state
space variables prior to symbolic model checking” that is
incorporated by reference herein in its entirety.

Formal verification tools available in the prior art for prop-
erty checking include, for example, Symbolic Model Verifi-
cation (SMV) software package available from Carnegie-
Mellon University, the coordinated specification analysis
(COSPAN) software package available from Bell Laborato-
ries (e.g. at ftp.research.att.com), and the VIS package avail-
able from University of California, Berkeley.

For additional information on formal verification tools, see
C.Kernand M. R. Greenstreet, “Formal Verification in Hard-
ware Design: A Survey,” in ACM Trans. on Design Automa-
tion of Electronic Systems, vol. 4, pp. 123-193, April 1999
that is incorporated by reference herein in its entirety.

Such formal verification tools normally operate on a
description of the digital circuit (also called “circuit-under-
verification”), which is generated from a hardware descrip-
tion language (HDL) such as Verilog (see “The Verilog Hard-
ware Description Language,” Third Edition, Don E. Thomas
and Philip R. Moorby, Kluwer Academic Publishers, 1996) or
VHDL (see “A Guide to VHDL”, Stanley Mazor and Patricia
Langstraat, Kluwer Academic Publishers, 1992).

Therefore, during prior art testing of a digital circuit, prop-
erties or assertions about the correct and incorrect behaviors
of'the circuit may be checked using a formal verification tool.
The properties are normally described using a HDL language
such as Verilog or using a property specification language
such as Sugar (e.g. available from IBM Research Labs, Haifa,
Israel). To validate the correctness of a digital circuit, the
formal verification tool must check many properties. The
properties may be checked individually sequentially or com-
bined simultaneously. The formal verification tool may start
from a single initial state or from a set of initial states for each
property.

One method for formal verification of properties is based
onso-called bounded model checking (BMC). Such a method
may use a Boolean formula that is TRUE if and only if the
underlying state transition system can realize a sequence of
state transitions that reaches certain states of interest within a
fixed number of transitions. If such a sequence cannot be
found at a given length, k, the search is continued for larger k.
The procedure is symbolic, i.e., symbolic Boolean variables
are utilized; thus, when a check is done for a specific sequence
of'length k, all sequences of length k from an initial plate are
examined. A Boolean formula that is formed for each
sequence is used by the tool, and if a satisfying assignment is
found, that assignment is a “witness” (also called “counter
example”) for the sequence of interest.

Such a formal verification tool has three possible results for
each Boolean formula: the formula is proven true; a counter-
example is produced; or the tool cannot determine the truth of
the Boolean formula because memory or compute resource
limits prevent completion of the checking. The last-described
result (i.e. “cannot determine”™) is often the case when such a

US 9,262,557 B2

3

tool is applied to a real-world digital circuit (such as a micro-

processor) that has a large number of transistors (in the order

of 1-5 million), because of the well known “state explosion
problem”

As described in “Architecture Validation for Processors”,
by Richard C. Ho, C. Han Yang, Mark A. Horowitz and David
L. Dill, Proceedings 22.nd Annual International Symposium
on Computer Architecture, pp. 404-413, June 1995, “modern
high-performance microprocessors are extremely complex
machines which require substantial validation effort to ensure
functional correctness prior to tapeout” (see page 404). As
further described in “Validation Coverage Analysis for Com-
plex Digital Designs” by Richard C. Ho and Mark A. Horow-
itz, Proceedings 1996 IEEE/ACM International Conference
on Computer-Aided Design, pp. 146-151, November 1996,
“the functional validation of state-of-the-art digital design is
usually performed by simulation of a register-transfer-level
model” (see page 146).

A number of metrics for verification tools are described in
the prior art, for example, see the following articles:

(1) Hoskote, Y. V., et al., “Automatic Extraction of the
Control Flow Machine and Application to Evaluating Cover-
age of Verification Vectors”, International Conference on
Computer Design: VLSI in Computers & Processors, Oct.
2-4, 1995, pp. 532-537;

(2) Moundanos, D., “Abstraction Techniques for Valida-
tion Coverage Analysis and Test Generation”, IEEE Transac-
tions on Computers, vol. 47, January 1998, pp. 2-14;

(3)Devadas, S., et al., “An Observability-Based Code Cov-
erage Metric for Functional Simulation”, IEEE/ACM Inter-
national Conference on Computer-Aided Design, Nov.
10-14, 1996, pp. 418-425; and

(4) Geist, D., et al., “Coverage-Directed Test Generation
Using Symbolic Techniques”, Formal Methods in Computer-
Aided Design, First International Conference, FMCAD 96,
Palo Alto, Calif., Nov. 6-8, 1996, pp. 142-159.

Each of the above-referenced articles (1)-(4) is incorporated

by reference herein in its entirety.

See U.S. Pat. No. 6,102,959 granted to Hardin, et al. on
Aug. 15, 2000 and entitled “Verification tool computation
reduction” that is incorporated by reference herein in its
entirety.

U.S. Pat. No. 6,311,293 granted to Kurshan, et al. on Oct.
30, 2001 and entitled “Detecting of model errors through
simplification of model via state reachability analysis™ that is
incorporated by reference herein in its entirety.

Also incorporated by reference herein in their entirety are
the following: U.S. Pat. No. 6,356,858 granted to Malka, et al.
on Mar. 12, 2002 and entitled “Coverage measurement tool
for user defined coverage models™; U.S. Pat. No. 5,724,504
granted to Aharon, et al. on Mar. 3, 1998 and entitled “Method
for measuring architectural test coverage for design verifica-
tion and building conformal test”.

Also incorporated by reference herein in their entirety are
the following references:

“Algorithms for the Satisfiability (SAT) problem: A Survey”
by Jun Gu, Paul W. Purdom, John Franco, and Benjamin W.
Wah, DIMACS Series on Discrete Mathematics and Theo-
retical Computer Science 35:19-151, American Math-
ematical Society, 1997;

“A machine program for theorem-proving” by Martin Davis,
George Longemann, and Donald Loveland in Communi-
cations of the ACM, 5(7):394-497, July 1962; and

“Chaft: Engineering an Efficient SAT Solver” by M. W.
Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S.
Malik, in 38th Design Automation Conference (DAC *01),
June 2001, pp. 530-535.

10

15

20

25

30

35

40

45

50

55

60

65

4
SUMMARY

A computer is programmed in accordance with the inven-
tion, to use a formal verification tool to check for a counter-
example of a property in a high level description (HLD) of a
digital circuit, and concurrent with use of the tool, to maintain
a measure of the analysis being performed by the tool. In
certain embodiments, a measure of analysis performed with-
out finding a counter-example, is reported to the user when
the tool stops due to a limit on one or more resources, and
without producing a proof or finding a counter-example.

Such an analysis measure may be used as a guide for future
testing, or to terminate testing. In some embodiments, a value
N for the analysis measure indicates that a given property will
not be violated within N sequential transitions through a
number of states reachable from a user-specified initial state.
Therefore, in such embodiments, the measure (also called
“proof radius”) of value N indicates that the formal verifica-
tion tool has exhaustively covered every possible excursion of
length N from the initial state, and formally proved that no
error is possible.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates, in a flow chart, one embodiment of a
method for use of a formal verification tool to check a prop-
erty, while maintaining a measure of the work done.

FIGS. 2A and 2C each illustrate, in a diagram of state
space, the states visited by a formal verification tool in per-
forming one and two iterations respectively, of the method of
FIG. 1.

FIGS. 2B and 2D each illustrate, a logic cone representa-
tive of the property being checked when the states of FIGS.
2A and 2C respectively are visited, and a storage element
indicative of the amount of work done by the formal verifi-
cation tool.

FIG. 2E illustrates, a logic cone representative of a counter-
example to the property being found in a fifth iteration of the
method of FIG. 1.

FIG. 3 illustrates, in a flow chart, one specific implemen-
tation of the method of FIG. 1.

FIG. 4 illustrates, in a conceptual diagram, use of formal
verification with simulation to find defects in the description
of a circuit.

DETAILED DESCRIPTION

In accordance with the invention, a formal verification tool
is used to iteratively check that a property (such as a Boolean
formula) is satisfied by all states that are within a certain
number of transitions (e.g. 1 transition) starting from an ini-
tial state (which may be, for example, specified by the user).
For example, as illustrated in FIG. 1, a method 100 uses the
tool in act 101 to perform one iteration, and checks if a
resource limit has been reached in act 103 and if not, returns
to act 101 via branch 105.

In several embodiments, at each iteration of the method, a
measure (also called “proof radius™) is maintained, of the
analysis being performed by the tool in act 101 without find-
ing a counter-example to the property being checked e.g. inan
act 102 as shown in FIG. 1. In some embodiments of the
invention, the formal verification tool is used to conduct a
breadth-first search of the state space, wherein the number
“n” of transitions from a current state is set to one. In other
embodiment the search need not be breadth first, e.g. if the
tool checks the property for n (greater than one) successive
transitions from the current state. Regardless of the type of

US 9,262,557 B2

5

search, the depth reached by the tool (in number of sequential
transitions through number of reachable states) from the ini-
tial state without finding a counter example is maintained in
act 102, as a measure of the analysis thathas been done. When
a limit on one or more resources is reached (as determined in
act 103), method 100 stops iteration and instead goes to act
104. In act 104, the method reports the measure as an indica-
tion of the amount of analysis that has been done without
finding a counterexample to the property being checked.

The analysis measure being reported by method 100 (e.g.
in act 104) is indicative of the amount of analysis that has been
performed (e.g. the depth to which the search progressed)
during formal verification, without finding a counter-example
for the property being checked. Such a measure may be used
as a guide for future testing, or to terminate testing, depending
on the embodiment.

Operation of method 100 (FIG. 1) is now described in the
context of an example illustrated in FIG. 2A. In this example,
a state space 200 contains a number of states 201-207 that are
representative of a digital circuit (based on its description in
HDL). Assume that method 100 starts from an initial state
201. Initial state 201 may be selected by a user. Alternatively
initial state 201 may be obtained from testbenches used in
simulation (e.g. in acommercially available simulator such as
VCS from Synopsys, Mountain View, Calif.).

When starting from states in a simulation testbench,
method 100 uses a formal verification tool to explore orders
of magnitude more of a digital circuit’s state-space than tra-
ditional black-box simulation testbenches. Specifically, a for-
mal verification tool (when used as described herein) per-
forms analysis equivalent to simulating every possible legal
sequence of inputs in the simulation cycles surrounding the
test vector stimuli. By doing this, method 100 significantly
increases the state coverage of the digital circuit and high-
lights many corner-case issues missed by simulation alone. In
this manner, method 100 amplifies the user-specified simula-
tion test stimuli, as illustrated in FIG. 4.

Referring to FIG. 4, a description of the design, 401, writ-
ten in a hardware description language (e.g. Verilog) contains
properties or checkers, 404, and constraints, 405. A simula-
tion vector, 403, traverses a particular sequence of states of
the design. Method 100 amplifies said simulation vector to
analyze a larger set of states of the design, 402, searching for
input sequences which will cause a property to be violated.
Because this formal analysis is based on user-specified con-
straints, only legal input sequences are considered, which
minimizes the number of fake findings of counter examples
(also called “false firings™).

Referring to the example in FIG. 2A, in performing act
101, a property that has been specified by the user is exhaus-
tively checked (either explicitly or implicitly) in states 202
and 203 that can be reached from state 201 within a preset
number n of sequential transitions (e.g. one transition)
through zero or more states in the current act 101. If no
counter example is found for the property, then an analysis
measure 209 (FIG. 2B) is incremented (as per act 102) before
returning to act 101 (via branch 105).

In one implementation, the property is not checked by
simulation of each state that is one transition (i.e. n=1) away
from initial state 201. Instead, a fan-in cone oflogic 210 (FIG.
2B)isused to determine which inputs 218 and 219 are needed
to generate an output condition that is known to be a counter-
example for the property. The just-described fan-in cone of
logic 210 may be determined by a transitive fanin. A transitive
fanin is all the primary inputs and intermediate variables 214,

40

45

50

6

215, and 216 used by a state variable 211, wherein the state
variable represents a logic element or a storage element in a
circuit description.

The just-described counter-example may be determined
from the property itself (by negating a Boolean expression for
the property). The formal verification tool of some embodi-
ment builds up a set of logic equations (in act 101 in FIG. 1)
that represent the performance of a preset number of simula-
tion cycles through a logic tree representative of the digital
circuit being tested. By solving these equations, the tool
determines whether a counter-example for a given property is
reachable from states that are currently being visited (e.g.
states 201-203). If a counter-example is not found, a storage
element 209 (FIG. 2B) is incremented (e.g. from 0 to 1).

Therefore, in this specific implementation, the tool evalu-
ates only states located within a register-transfer-level (RTL)
logic cone 210 (FIG. 2B) that is associated with checking a
property. In this manner, the tool does not verify states in the
whole digital circuit description (e.g. represented by states
211-214 within the cone), thereby to simplify the task of
checking the property.

Note however, that any other property checking tool can be
used to perform act 101 in method 100 (FIG. 1). The just-
described proofradius may be computed for a symbolic simu-
lation tool or an explicit state enumeration tool although some
embodiments (discussed herein) maintain and provide the
proof radius for a tool that uses bounded model checking
(BMC) to look for errors in the description of a digital circuit.

In asecond iteration of method 100 in this example, act 101
is repeated, now by visiting states 204-207 (FIG. 2C) that are
two sequential transitions away from state 201 and that are
reachable from the states 202 and 203 (which were located
one transition away). Once again, in actual implementation,
states in a larger cone 220 (FIG. 2D) are visited, in checking
whether a counter-example to the property is reachable.
Again, if no counter-example is found reachable, the storage
element 209 is incremented (e.g. to value 2) in act 102, and if
resource limits are not yet reached, branch 105 is again taken.

In this manner, the method 100 is performed iteratively
until a counter-example 260 is reached from a state 251
(which is five sequential transitions away in this example). At
this stage, storage element 209 (which had been incremented
in repetitively performing act 103) has the value 4. Note that
if a resource limit had been reached prior to reaching state
251, then the value 4 is displayed by method 100 (as per act
104). The value 4 for the proof radius indicates that the
property being checked will not be violated within 4 sequen-
tial transitions from the initial state 201. Therefore, in such
embodiments, value 4 indicates that the formal verification
tool has exhaustively covered every possible excursion of
length 4 from the initial state 201, and formally proved that no
error is possible within this distance 4. As used herein the
terms “length” and “distance” are intended to mean sequen-
tial transitions from an initial state.

In several embodiments, a computer is programmed to
perform the following acts: starting at an initial state, set to
zero a variable (also called “proof radius™) that is indicative of
the amount of analysis done so far (see act 301 in FIG. 3), set
to one transition the range of analysis for the formal verifica-
tion tool (see act 302), analyze one transition of behavior of
the digital circuit to determine validity of a given property
(see act 303), check if a counter-example to the property is
found (see act 304) and if not found, check if a resource limit
is reached (see act 306) and if not increment the proof radius
and the range of analysis (see act 307), and return to act 303.
When a counter example is found in act 304, report the value
in the proof radius as a measure of the work done by the

US 9,262,557 B2

7

formal verification tool and also report the counter example
(in act 305). When a resource limit is reached in act 306, the
computer is programmed to report the proof radius (in act
308).

In some embodiments, if a digital circuit contains multiple
clocks that operate at different frequencies, for such circuits,
the proofradius is maintained in units of the greatest common
divisor of all clock periods. For example if the digital circuit
contains two docks of periods 15 and 20 nanoseconds, then
the greatest common divisor is 5 nanoseconds (which is not
any of the original clock periods).

Although the above description refers to only checking of
one property, to functionally verify a digital circuit’s descrip-
tion (in HDL), many properties may need to be proven. More-
over, the results of a formal tool may be different for each
property: e.g. a subset of the properties will be proven,
another subset will have counter-examples found and a third
subset will have unproven properties with a proof radius
reported for each property as a measure of the analysis per-
formed.

Therefore, to obtain better functional verification of a digi-
tal circuit description, a formal verification tool can be repeti-
tively applied to all such properties (in act 101 in FIG. 1)
before going to act 102, and when returning back via branch
105 then the tool may be applied only to subsets, of all
unproven properties. In some embodiments, on returning
back via branch 105, method 100 may increase the resource
limits each time.

Furthermore, in some embodiments, the proof radius may
be used to select a subset of the unproven properties for
further analysis as follows: (1) sort list of unproven properties
in ascending order of proof radius, (2) select a percentage (p
%) of properties for further analysis, (3) select the properties
in the top p % of the sorted list, (4) repeat analysis on selected
subset of properties with higher resource limits.

As discussed above, in method 100 (FIG. 1), use of a
formal verification tool needs to start from an initial state, also
known as a seed state. In some embodiments, act 101 (FIG. 1)
is repeatedly performed from many seed states. When method
100 is performed for a number of seed states, the proof radius
of'each property may be reported in three forms: (1) minimum
proofradius achieved during analysis from all the seed states,
(2) the average proofradius achieved during analysis from all
the seed states, and (3) the maximum proof radius achieved
during analysis from all the seed states. Depending on the
embodiment, the report of proof radius may be given at peri-
odic intervals during execution of the formal algorithm and/or
at the end of the analysis.

In a first example, a report of the proof radii achieved for 4
properties starting from several initial states (also called
“seeds”) is illustrated below.

Proof Radius Summary by Property
Average Min Property Name
4.50 4 fire ¢s3232_top.cO.u_MAS3232.fire fire O
3.50 3 fire ¢s3232__top.c0.u_MAS3232.fire_ 0 fire O
4.20 3 fire ¢s3232__top.cO.u__MAS3232.fire 1 fire O
10.50 6 fire ¢s3232__top.c0.u_MAS3232.fire_ 10 fire O

In the above example, the proof radius is reported in two
statistical forms over multiple states: an average and a mini-
mum (although other statistical forms, such as a median and/
or standard deviation and/or maximum may be reported in
other examples). The average proof radius is obtained as a

10

15

20

25

30

35

40

45

50

55

60

65

8

mean of the values of the proof radius for each seed, while the
minimum proof radius is the smallest value across all seeds.

A large difference between the average and minimum
proof radius values (as seen in the last property in the exem-
plary table above) may be used to increase the memory and/or
computation time resources (e.g. for the last property in the
table), so that eventually the difference in proof radii is more
uniform across all properties. So, the proof radius can be used
as a feedback, to identify one or more properties that need
more effort (such additional effort is focused on the last
property in the above exemplary table, while the remaining
properties are not further analyzed).

Inasecond example, a circuit-under-verification includes a
counter that increments when a primary input is asserted. A
high level description (HDL) of a circuit-under-verification in
the Verilog language is shown in Appendix 1 below. The
property to be checked is:

count<=128

In one embodiment of method 100, the formal tool used to
check the property is based on the bounded model checking
(BMC) technique. Specifically, an initial state (of the circuit
described in the above Verilog code) is given by the user to the
formal verification tool, and in this initial state the variable
“count” has been set to 0. At this time, method 100 sets the
analysis measure (proof radius) to 0.

Next, at the first cycle, the BMC technique examines
behavior of the counter in the Verilog code, and finding no
counter-example (where the variable “in” is asserted for more
than 128 total cycles), increments the proof radius to 1. This
process continues until a termination condition is reached.
The termination condition is one of: (1) a resource limit is
reached, for example, a pre-determined computation limit, or
(2) a counter-example to the property is found. At each rep-
etition of act 101 (which corresponds to one step of the BMC
technique), the proof measure is incremented.

The proof radius can also be used for comparing different
formal property checking algorithms. In one embodiment, the
number of seed states that can be analyzed to a fixed proof
radius for a given set of properties in a given time period is
measured, and compared across different algorithms. In
another embodiment, the proof radius achieved for a single
property in a given time period is measured, and compared.

Iustrative software source code for calculating and dis-
playing proofradius for anumber of properties in one specific
example is provided in Appendix 2 below.

A computer may be programmed in the manner described
herein to perform formal analysis around each state that a user
simulates, with each assertion (which may be, for example,
specified by the user) as a property to be checked. Moreover,
in one embodiment, the user simply sets a variable (also
called “effort variable) to one of three values: low, medium,
and high, and the computer is programmed to automatically
compute the amount of each resource to be used for each
assertion for each state. For example, the computer may
equally divide a total amount of compute resource usage
metric (e.g. CPU time or memory) by the product (number of
assertionsxnumber of states) to arrive at a budget of that
resource for each assertion in each state. Instead of compute
resource usage metric, another unit, such as the number of
gates or the complexity of logic may be used to divide up the
limited resources, to arrive at an alternative budget for each
assertion for each state.

Some embodiments compare different SAT-based BMC
techniques, and in such embodiments the computer resource
usage is measured in terms of the number of backtracks,
where backtrack refers to a standard backtracking operation

US 9,262,557 B2

9

performed by prior art SAT solvers (e.g. see the above-refer-
enced articles entitled “Algorithms for the Satisfiability
(SAT) problem: A Survey”, “A machine program for theo-
rem-proving” and “Chaff: Engineering an Efficient SAT
Solver”).

Although in some embodiments, the computer resources
are equally divided after a run is started, the user may decide
to allocate more computer resources to a specific subset of
states or a specific subset of assertions, e.g. by setting the
effort variable to high for a given run, and to low for another
run.

Numerous modifications and adaptations of the embodi-
ments, examples, and implementations described herein will
be apparent to the skilled artisan in view ofthe disclosure. For
example, in certain embodiments of the type described above,
a computer is programmed with a formal verification tool to
simultaneously check a number of properties, and also main-
tain a proof radius for each property. A large difference in
values between proofradii of different properties may be used
to further test (either automatically or with manual approval)
those properties that have a lower proof radius, thereby to
obtain greater confidence in the overall design of the circuit.

A metric of the type described herein (e.g. the proofradius)
can be used to provide a level of confidence to a user: the
larger the value, the more confidence the user may have in the
circuit under verification. As N tends to infinity, the user may
decide that there is no bug (also called “defect”) in the digital
circuit if there is no counter-example. A value of N less than
infinity may be used in verifying descriptions of complex
real-world digital circuits, to stop testing based on practical
experience. In one example, testing may be stopped when a
proofradius value becomes larger than the actual or estimated
diameter of the digital circuit (wherein the diameter is the
minimum distance (or number of sequential transitions from
an initial state) required to reach the farthest state among all
possible reachable states).

A method to measure the speed of an exhaustive property
checking algorithm, includes calculating a first proof radius
of'a first property on a first seed using a fixed budget of time,
and comparing with a corresponding proof radius for another
algorithm. Another method to measure the speed of an
exhaustive property checking algorithm includes calculating
the computation time used by said property checking algo-
rithm to reach a pre-determined proof radius, and comparing
with a corresponding computation time for another algo-
rithm.

Moreover, a method to compare the performances of a
plurality of property checking algorithms in some embodi-
ments includes calculating the proof radius of a first property
achieved by a first property checking algorithm on a first seed
state, calculating the proof radius of said property achieved by
a second property checking algorithm on said seed state, and
comparing the first and second proof radii.

In the just described method, in some embodiments, the
minimum, maximum and average proofradii of said property
for a plurality of seed states are compared for different algo-
rithms. Also in the just-described method, in several embodi-
ments, the minimum, maximum and average proof radii of a
plurality of properties are compared for said seed state. Fur-
thermore, in some embodiments of the just-described
method, the minimum, maximum and average proof radii of
a property are compared for a plurality of seed states.

A metric of the type described herein can be used to bench-
mark different formal verification tools, e.g. by providing the
same problem to multiple tools and comparing the resulting
proofradii (i.e. same digital circuit, same properties and same

10

15

20

25

30

35

40

45

50

10

budget yield different proof radii for the different tools due to
difference in techniques being used by the two tools).

Another way to benchmark different formal verification
tools is by stopping the tools when a certain proof radius is
reached, when working on the same problem, and comparing
the resources used by the two tools (e.g. to determine which
tool finished first). One variant of this method is to determine
the number of initial states that can be processed by each tool,
e.g. within one second of computation time (i.e. states/sec-
ond).

N)umerous such modifications and adaptations of the
embodiments described herein are encompassed by the
attached claims.

APPENDIX 1

module DUV(clock, areset, in);
input clock;
input reset;
input in;
reg [31:0] count;
always @(posedge clock or posedge areset) begin
if (areset == 1'b1) begin
count <= 'b0;
else
if (in == 1'b1) begin
count <= count + 1;
end
end
endmodule

APPENDIX 2

/* Structure definitions */
typedef struct StatsS {
/* chx based stats */
int *nAborts; /* count of seeds first abort at unroll i */
int nNoAborts; /* count of seeds no aborts up to max unroll */
boolean firingLimitReached;
/* scratch values */
int clockPeriod;
boolean atMaxUnroll;
int *isAborted; /* unroll of earliest abort (0 if no aborts) for
seed i cycles from cur horizon */
} SStats, *Stats;
typedef struct ctxt_struct {
/* Context stuff */
int min__unroll;
int max__unroll;
int chkr_ budget;
int n_ trgtChxs;
int n_ firedTrgtChxs;
int n_trgts;
TrgtStatusS *trgts_ status;
ChxStatsS *trgtChxs_ stats;
int min__budget;
int max__budget;
} etxt_struct, *ctxt;
/* Code to display (and compute) proof radius */
void display_ proof radius_ summary (
ctxt scc) /* context with global data about algorithm */

/* checker budget */

55 4

60

65

int i;
bool isFound;

chx__defn chx;

const char *chxName;

double aveProofRadius;

int nTargets = 0;

double sumOfAverages = 0;

/* print proof radius summary */
printf(*\n”);

printf(*
printf(*“Proof Radius Summary by Target\n”);
printf(*
printf(*%10s %10s %s\n”, “Average”, “Minimum”, “Check Name”);
printf(*

\n”);

\n”);

\n”);

US 9,262,557 B2

11
APPENDIX 2-continued

12
APPENDIX 2-continued

for_all_properties(properties, i, chx) { /* For each property */

Stats stats; /* Structure containing stats from formal analysis (BMC)*/

get(chx, &stats); /* Get the stats structure for 1 property */
if (!check_ fired(chx)) {
int minProofRadius = scc->max__ unroll;
int sigmaProofRadii = 0;
int nSeeds = 0;
int ur;
/* aborts have proof radius of (unroll — clockPeriod)... */
for (ur = sce->max__unroll; ur > sce->min__unroll; ——ur) {
if (stats->nAborts[ur]) {
int proofRadius = ur — stats->clockPeriod;
nSeeds += stats->nAborts[ur];
sigmaProofRadii += proofRadius * stats->nAborts[ur];
minProofRadius = proofRadius;

}

/* ...except at min__unroll where the proof radius is zero */
if (stats->nAborts[scc->min__unroll]) {
nSeeds += stats->nAborts[scc->min__unroll];
minProofRadius = 0;

/* seeds with no aborts have proof radius of max unroll */

nSeeds += stats->nNoAborts;

sigmaProofRadii += scc->max__unroll * stats->nNoAborts;

/* check if there is a seed not yet counted */

if (stats->atMaxUnroll && !stats->isAborted[scc->max__unroll]) {
++nSeeds;
sigmaProofRadii += scc->max__unroll;

chxName = get__name(chx);
aveProofRadius =
(nSeeds) ? DIV(sigmaProofRadii, nSeeds) : minProofRadius;
printf(*%10.2f %10d %s\n”,
aveProofRadius,
minProofRadius,
chxName);
sumOfAverages += aveProofRadius;
nTargets++;

¥
} end__for;
/* Code to find search for counter-examples to properties and

keep track of information for proof radius calculation */
static void search_ targets (

ctxt sce,

int unrollLimit,
state__id *Sids)
int unroll, i;

/* update stats */
for (i=0; i<scc->n__trgtChxs; ++i) {
Stats cs = &sce->trgtChxs__stats[i];
if (cs->atMaxUnroll && !cs->isAborted[sce->max__unroll]) {
++cs->nNoAborts;

for (unroll = scc->max__unroll-1; unroll >= sce->min_ unroll;
—-unroll) {
cs->isAborted[unroll+1] = cs->isAborted[unroll];

cs->isAborted[sce->min__unroll] = 0;
cs->atMaxUnroll = FALSE;

/* search for firings */
for (unroll = unrollLimit; unroll >= scc->min__unroll; ——unroll) {
unsigned phase;
state__id Sid = Sids[unroll];
/* for each target... */
for (i=0; i<scc->n__trgts; ++i) {
TrgtStatusSP ts = &sce->trgts_status[i];
/* is target not max-ed out on firings? */
if (ts->stats->firingLimitReached) {
/* is the current unroll approprate for target? */
ts->retry[sce->min_unroll] = TRUE;
if (ts->retry[unroll]) {
ts->retry[unroll] = FALSE;
/* is clock phase #not# appropriate for target? */
if (Mts->activePhases[phase] || (unroll % ts->clockPeriod)) {
/* try again at higher unroll! :-) */
ts->retry[unroll+1] = TRUE;

10

15

20

25

30

35

40

45

50

55

continue;

/* does target already fire on the seed? */

if (is_fired__in_ state(scc->scdb, ts->trgt, Sid)) {
/* do not bother trying to make it fire again */
continue;

}
/* else */ {
find_firing_ result_s result={0 };
find_firing args sargs={0};
int baseCnstrBudget;
int nFirings;
chx__stats chxStats;
/* OK, search for target firing! */
args.unroll = unroll;
args.budget =
MIN(sce->max__budget,
(ts->baseBudget[unroll] +
ts->bonusBudget[unroll]));
baseCnstrBudget = (2 * ts->baseBudget[unroll]) — scc-

>min__budget;

args.constraintBudget =
MIN(2 * scc->max__budget,
(baseCnstrBudget +
ts->bonusCnstrBudget[unroll]));
/* Search for counter-example to properties by applying the BMC

technique and obtain a result in the “result” structure*/

find_ firing(sce->fc, ts->trgt, &args, &result);
/* digest result */
switch (result.status) {
case ABORT:
/* reduce baseline budget if too many aborts */
if (!result.cachedResultUsed) {
ts->nCredits[unroll]——;
if (ts->nCredits[unroll] == 0) {
/* reduce baseline budget */
int j;
for (j = unroll; j <= sce->max__unroll; ++j) {
ts->nCredits[j] = scc->budgetReductionThreshold;
if (ts->baseBudget[j] > scc->min__budget) {
ts->baseBudget[j] -= 1;
¥
¥
¥

/* update proof radius stats */
if (Mts->stats->isAborted[unroll]) {
ts->stats->isAborted [unroll] = unroll;
++ts->stats->nAborts[unroll];
}
break;
case OK:
/* stop searching target if it fires too often */
chxStats = get__ stats(ts->stats->chx);
nFirings = count(chxStats->firings);
break;
case INCONSISTENT:
if (unroll < sce->max__unroll) {
/* try again at higher unroll! :-) */
ts->retry[unroll+1] = TRUE;

}else {

ts->stats->atMaxUnroll = TRUE;
)

break;
default:

The invention claimed is:
1. A method for determining a performance rating of a

formal verification tool, the method comprising:
by a computer, determining a proof radius indicative of an

amount of analysis performed for a property of a circuit
without finding a counter-example for the property

US 9,262,557 B2

13

when using the formal verification tool to formally

verify the property until a predetermined limit is met;
by the computer, determining a performance rating for the

formal verification tool, wherein the performance rating

is based at least in part on the proof radius; and
displaying the performance rating;

wherein the predetermined limit is based at least in part on

a predetermined budget of processing time that elapses
during the formally verifying or on a reaching a proof
radius limit during the formally verifying.

2. The method of claim 1, wherein the predetermined limit
is at least partially specified by a user.

3. One or more non-transitory machine-readable storage
media storing machine-readable instructions that when
executed by a computer cause the computer to perform a
method for determining a performance rating of a formal
verification tool, the method comprising:

determining a proof radius indicative of an amount of

analysis performed for a property of a circuit without
finding a counter-example for the property to formally

10

15

14

verity the property with the formal verification tool until
a predetermined limit is met;

determining a performance rating for the formal verifica-
tion tool, wherein the performance rating is based at
least in part on the proof radius; and

displaying the performance rating;

wherein the predetermined limit is based at least in part on

a predetermined budget of processing time that elapses
during the formally verifying or on a reaching a proof
radius limit during the formally verifying.

4. The non-transitory machine-readable storage media of
claim 3, wherein the determined proof radius is a minimum
proof radius, an average proof radius, or a maximum proof
radius achieved during analysis of the circuit from one or
more seed states.

5. A system comprising a computer having one or more
hardware processors and the non-transitory machine-read-
able storage media of claim 3.

#* #* #* #* #*

